RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/20348906http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20348906http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20348906http://www.w3.org/2000/01/rdf-schema#comment"Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.org/dc/terms/identifier"doi:10.1038/nature08884"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.org/dc/terms/identifier"doi:10.1038/nature08884"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/author"Fuchs G."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/author"Fuchs G."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/author"Say R.F."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/author"Say R.F."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/name"Nature"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/name"Nature"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/pages"1077-1081"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/pages"1077-1081"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/title"Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/title"Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme."xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/volume"464"xsd:string
http://purl.uniprot.org/citations/20348906http://purl.uniprot.org/core/volume"464"xsd:string
http://purl.uniprot.org/citations/20348906http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/20348906
http://purl.uniprot.org/citations/20348906http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/20348906
http://purl.uniprot.org/citations/20348906http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/20348906
http://purl.uniprot.org/citations/20348906http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/20348906
http://purl.uniprot.org/uniprot/A0RV30http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/20348906
http://purl.uniprot.org/uniprot/F9VMT6http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/20348906