RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/20660484http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20660484http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20660484http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Citation
http://purl.uniprot.org/citations/20660484http://www.w3.org/2000/01/rdf-schema#comment"All tRNA(His) possess an essential extra G(-1) guanosine residue at their 5' end. In eukaryotes after standard processing by RNase P, G(-1) is added by a tRNA(His) guanylyl transferase. In prokaryotes, G(-1) is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G(-1) we find here that both maturation pathways can be used. Indeed, tRNA(His) with or without a G(-1) are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNA(His) precursors at both positions G(+1) and G(-1). The G(-1) is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNA(His) without G(-1) has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNA(His) with a G(-1) are recovered. This shows that a previously unreported tRNA(His) guanylyltransferase activity is present in plant mitochondria."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.org/dc/terms/identifier"doi:10.1093/nar/gkq646"xsd:string
http://purl.uniprot.org/citations/20660484http://purl.org/dc/terms/identifier"doi:10.1093/nar/gkq646"xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Giege P."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Giege P."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Marechal-Drouard L."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Marechal-Drouard L."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Gallerani R."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Gallerani R."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Gobert A."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Gobert A."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Placido A."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Placido A."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Sieber F."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/author"Sieber F."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/name"Nucleic Acids Res."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/name"Nucleic Acids Res."xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/pages"7711-7717"xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/pages"7711-7717"xsd:string
http://purl.uniprot.org/citations/20660484http://purl.uniprot.org/core/title"Plant mitochondria use two pathways for the biogenesis of tRNAHis."xsd:string