RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/2111322http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2111322http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2111322http://www.w3.org/2000/01/rdf-schema#comment"In the course of an electrophoretic mutation screening program of 32,000 dried blood samples from newborns, 17 genetic variants of apolipoprotein A-I (apoA-I) were found and structurally analyzed. The following defects were identified by the combined use of high performance liquid chromatography, time-of-flight secondary ion mass spectrometry, and sequence analysis: Pro3----Arg (1 x), Pro4----Arg (1 x), Asp89----Glu (1 x), Lys107----0 (4 x), Lys107----Met (2 x), Glu139----Gly (2 x), Glu147----Val (1 x), Pro165----Arg (4 x), and Glu198----Lys (1 x). The distribution of point mutations in the apoA-I gene leading to these 9 and 11 other variants of apoA-I reported previously was statistically analyzed. Substitutions are overrepresented in the 10 amino-terminal amino acids (p less than 0.001, chi 2-test) and in residues 103-177 (p less than 0.025, chi 2-test) or residues 103-198 (p less than 0.05, chi 2-test), respectively. We further noted the following. (i) Prolines were substituted by arginine or histidine residues at a frequency much higher than expected on the basis of random nucleotide substitutions (5 out of 18 "electrically non-neutral" amino acid substitutions, p less than 0.001, chi 2-test). These substitutions are the result of transversions of cytosines contained within stretches of at least 5 consecutive cytosines in the apoA-I gene. The observed hypervariability of the apoA-I amino terminus, therefore, might be caused by a hot spot for mutation formed by the 7 subsequent cytosines in codons 3, 4, and 5. (ii) CpG dinucleotides were overrepresentatively affected by C----T transitions (5 out of 18 electrically nonneutral amino acid substitution, p less than 0.001, chi 2-test). The hypervariability of the apoA-I alpha-helical domain might therefore be caused by CpG dinucleotides predominantly occurring in codons 120-208 of apoA-I (82 out of 125). (iii) Comparison of mutation sites in the human apoA-I gene with sites of nonsynonymous substitutions revealed that amino acid substitutions found in human apoA-I were predominantly localized in areas that were little conserved during mammalian evolution. These regions may therefore represent areas of less structural constraint for the function of apoA-I."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.org/dc/terms/identifier"doi:10.1016/s0021-9258(19)38931-8"xsd:string
http://purl.uniprot.org/citations/2111322http://purl.org/dc/terms/identifier"doi:10.1016/s0021-9258(19)38931-8"xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Assmann G."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Assmann G."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Funke H."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Funke H."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Walter M."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Walter M."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Altland K."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Altland K."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Benninghoven A."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"Benninghoven A."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"von Eckardstein A."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/author"von Eckardstein A."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/date"1990"xsd:gYear
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/date"1990"xsd:gYear
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/pages"8610-8617"xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/pages"8610-8617"xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/title"Structural analysis of human apolipoprotein A-I variants. Amino acid substitutions are nonrandomly distributed throughout the apolipoprotein A-I primary structure."xsd:string
http://purl.uniprot.org/citations/2111322http://purl.uniprot.org/core/title"Structural analysis of human apolipoprotein A-I variants. Amino acid substitutions are nonrandomly distributed throughout the apolipoprotein A-I primary structure."xsd:string