RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/21696459http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/21696459http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/21696459http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Citation
http://purl.uniprot.org/citations/21696459http://www.w3.org/2000/01/rdf-schema#comment"Hsp31 encoded by hchA is known as a heat-inducible molecular chaperone. Although structure studies revealed that Hsp31 has a putative catalytic triad consisting of Asp-214, His-186 and Cys-185, its enzymatic function, besides weak amino-peptidase activity, is still unknown. We found that Hsp31 displays glyoxalase activity that catalyses the conversion of methylglyoxal (MG) to d-lactate without an additional cofactor. The glyoxalase activity was completely abolished in the hchA-deficient strain, confirming the relationship between the hchA gene and its enzymatic activity in vivo. Hsp31 exhibits Michaelis-Menten kinetics for substrates MG with K(m) and k(cat) of 1.43±0.12 mM and 156.9±5.5 min⁻¹ respectively. The highest glyoxalase activity was found at 35-40 °C and pH of 6.0-8.0, and the activity was significantly inhibited by Cu²⁺, Fe³⁺ and Zn²⁺. Mutagenesis studies based on our evaluation of conserved catalytic residues revealed that the Cys-185 and Glu-77 were essential for catalysis, whereas His-186 was less crucial for enzymatic function, although it participates in the catalytic process. The stationary-phase Escherichia coli cells became more susceptible to MG when hchA was deleted, which was complemented by an expression of plasmid-encoded hchA. Furthermore, an accumulation of intracellular MG was observed in hchA-deficient strains."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.org/dc/terms/identifier"doi:10.1111/j.1365-2958.2011.07736.x"xsd:string
http://purl.uniprot.org/citations/21696459http://purl.org/dc/terms/identifier"doi:10.1111/j.1365-2958.2011.07736.x"xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Park C."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Park C."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Choi D."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Choi D."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Min B."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Min B."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Kim I."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Kim I."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Subedi K.P."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/author"Subedi K.P."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/date"2011"xsd:gYear
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/date"2011"xsd:gYear
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/name"Mol. Microbiol."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/name"Mol. Microbiol."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/pages"926-936"xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/pages"926-936"xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/title"Hsp31 of Escherichia coli K-12 is glyoxalase III."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/title"Hsp31 of Escherichia coli K-12 is glyoxalase III."xsd:string
http://purl.uniprot.org/citations/21696459http://purl.uniprot.org/core/volume"81"xsd:string