RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/22013070http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/22013070http://www.w3.org/2000/01/rdf-schema#comment"Colonization of Helicobacter pylori in the acidic environment of the human stomach depends on the neutralizing activity of urease. Activation of apo-urease involves carboxylation of lysine 219 and insertion of two nickel ions. In H. pylori, this maturation process involves four urease accessory proteins as follows: UreE, UreF, UreG, and UreH. It is postulated that the apo-urease interacts with UreF, UreG, and UreH to form a pre-activation complex that undergoes GTP-dependent activation of urease. The crystal structure of the UreF-UreH complex reveals conformational changes in two distinct regions of UreF upon complex formation. First, the flexible C-terminal residues of UreF become ordered, forming an extra helix α10 and a loop structure stabilized by hydrogen bonds involving Arg-250. Second, the first turn of helix α2 uncoils to expose a conserved residue, Tyr-48. Substitution of R250A or Y48A in UreF abolishes the formation of the heterotrimeric complex of UreG-UreF-UreH and abolishes urease maturation. Our results suggest that the C-terminal residues and helix α2 of UreF are essential for the recruitment of UreG for the formation of the pre-activation complex. The molecular mass of the UreF-UreH complex determined by static light scattering was 116 ± 2.3 kDa, which is consistent with the quaternary structure of a dimer of heterodimers observed in the crystal structure. Taking advantage of the unique 2-fold symmetry observed in both the crystal structures of H. pylori urease and the UreF-UreH complex, we proposed a topology model of the pre-activation complex for urease maturation."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m111.296830"xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Chuck C.P."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Sun H."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Chen Y.W."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Wong K.B."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Wong H.C."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/author"Fong Y.H."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/date"2011"xsd:gYear
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/name"J Biol Chem"xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/pages"43241-43249"xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/title"Assembly of preactivation complex for urease maturation in Helicobacter pylori: crystal structure of UreF-UreH protein complex."xsd:string
http://purl.uniprot.org/citations/22013070http://purl.uniprot.org/core/volume"286"xsd:string
http://purl.uniprot.org/citations/22013070http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/22013070
http://purl.uniprot.org/citations/22013070http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/22013070
http://purl.uniprot.org/uniprot/#_Q09065-mappedCitation-22013070http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/22013070
http://purl.uniprot.org/uniprot/#_Q09067-mappedCitation-22013070http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/22013070
http://purl.uniprot.org/uniprot/Q09065http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/22013070
http://purl.uniprot.org/uniprot/Q09067http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/22013070