RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/22433848http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/22433848http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/22433848http://www.w3.org/2000/01/rdf-schema#comment"Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m112.349183"xsd:string
http://purl.uniprot.org/citations/22433848http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m112.349183"xsd:string
http://purl.uniprot.org/citations/22433848http://purl.org/dc/terms/identifier"doi:10.1074/jbc.M112.349183"xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Moss J."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Moss J."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Kato J."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Kato J."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Agledal L."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Agledal L."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Dolle C."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Dolle C."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Kasamatsu A."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Kasamatsu A."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Mashimo M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Mashimo M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Niere M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Niere M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Ziegler M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/author"Ziegler M."xsd:string
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/22433848http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string