RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/22522127http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/22522127http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/22522127http://www.w3.org/2000/01/rdf-schema#comment"The reduction of dehydroascorbate (DHA) to ascorbic acid (AA) is a vital cellular function. The omega-class glutathione transferases (GSTs) catalyze several reductive reactions in cellular biochemistry, including DHA reduction. In humans, two isozymes (GSTO1-1 and GSTO2-2) with significant DHA reductase (DHAR) activity are found, sharing 64% sequence identity. While the activity of GSTO2-2 is higher, it is significantly more unstable in vitro. We report the first crystal structures of human GSTO2-2, stabilized through site-directed mutagenesis and determined at 1.9 Å resolution in the presence and absence of glutathione (GSH). The structure of a human GSTO1-1 has been determined at 1.7 Å resolution in complex with the reaction product AA, which unexpectedly binds in the G-site, where the glutamyl moiety of GSH binds. The structure suggests a similar mode of ascorbate binding in GSTO2-2. This is the first time that a non-GSH-based reaction product has been observed in the G-site of any GST. AA stacks against a conserved aromatic residue, F34 (equivalent to Y34 in GSTO2-2). Mutation of Y34 to alanine in GSTO2-2 eliminates DHAR activity. From these structures and other biochemical data, we propose a mechanism of substrate binding and catalysis of DHAR activity."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.org/dc/terms/identifier"doi:10.1016/j.jmb.2012.04.014"xsd:string
http://purl.uniprot.org/citations/22522127http://purl.org/dc/terms/identifier"doi:10.1016/j.jmb.2012.04.014"xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Liu D."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Liu D."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Zhou H."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Zhou H."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Board P.G."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Board P.G."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Brock J."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Brock J."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Oakley A.J."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/author"Oakley A.J."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/name"J. Mol. Biol."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/name"J. Mol. Biol."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/pages"190-203"xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/pages"190-203"xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/title"Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/title"Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases."xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/volume"420"xsd:string
http://purl.uniprot.org/citations/22522127http://purl.uniprot.org/core/volume"420"xsd:string