RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23095756http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23095756http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23095756http://www.w3.org/2000/01/rdf-schema#comment"Previously, we characterized Saccharomyces cerevisiae exonuclease 5 (EXO5), which is required for mitochondrial genome maintenance. Here, we identify the human homolog (C1orf176; EXO5) that functions in the repair of nuclear DNA damage. Human EXO5 (hEXO5) contains an iron-sulfur cluster. It is a single-stranded DNA (ssDNA)-specific bidirectional exonuclease with a strong preference for 5'-ends. After loading at an ssDNA end, hEXO5 slides extensively along the ssDNA prior to cutting, hence the designation sliding exonuclease. However, the single-stranded binding protein human replication protein A (hRPA) restricts sliding and enforces a unique, species-specific 5'-directionality onto hEXO5. This specificity is lost with a mutant form of hRPA (hRPA-t11) that fails to interact with hEXO5. hEXO5 localizes to nuclear repair foci in response to DNA damage, and its depletion in human cells leads to an increased sensitivity to DNA-damaging agents, in particular interstrand cross-linking-inducing agents. Depletion of hEXO5 also results in an increase in spontaneous and damage-induced chromosome abnormalities including the frequency of triradial chromosomes, suggesting an additional defect in the resolution of stalled DNA replication forks in hEXO5-depleted cells."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m112.422444"xsd:string
http://purl.uniprot.org/citations/23095756http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m112.422444"xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Kumar R."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Kumar R."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Singh M."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Singh M."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Burgers P.M."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Burgers P.M."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Pandita T.K."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Pandita T.K."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Wold M.S."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Wold M.S."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Sparks J.L."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/author"Sparks J.L."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/date"2012"xsd:gYear
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/pages"42773-42783"xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/pages"42773-42783"xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/title"Human exonuclease 5 is a novel sliding exonuclease required for genome stability."xsd:string
http://purl.uniprot.org/citations/23095756http://purl.uniprot.org/core/title"Human exonuclease 5 is a novel sliding exonuclease required for genome stability."xsd:string