RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23222640http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23222640http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23222640http://www.w3.org/2000/01/rdf-schema#comment"Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and rRNA-metabolism factors. These proteins show dynamic subcellular localization during stress, including assembly into stress granules and processing bodies (P bodies). Cross-linking and immunoprecipitation (CLIP) analyses of the P-body components Pat1, Lsm1, Dhh1 and Sbp1 identified sites of interaction on specific mRNAs, revealing positional binding preferences and co-assembly preferences. When taken together, this work defines the major yeast mRNP proteins, reveals widespread changes in their subcellular location during stress and begins to define assembly rules for P-body mRNPs."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.org/dc/terms/identifier"doi:10.1038/nsmb.2468"xsd:string
http://purl.uniprot.org/citations/23222640http://purl.org/dc/terms/identifier"doi:10.1038/nsmb.2468"xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Jain S."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Jain S."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Parker R."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Parker R."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"She M."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"She M."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Mitchell S.F."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/author"Mitchell S.F."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/name"Nat. Struct. Mol. Biol."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/name"Nat. Struct. Mol. Biol."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/pages"127-133"xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/pages"127-133"xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/title"Global analysis of yeast mRNPs."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/title"Global analysis of yeast mRNPs."xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/volume"20"xsd:string
http://purl.uniprot.org/citations/23222640http://purl.uniprot.org/core/volume"20"xsd:string
http://purl.uniprot.org/citations/23222640http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23222640
http://purl.uniprot.org/citations/23222640http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23222640