RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23324351http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23324351http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23324351http://www.w3.org/2000/01/rdf-schema#comment"GTPases are molecular switches that regulate a wide-range of cellular processes. The GPN-loop GTPase (GPN) is a sub-family of P-loop NTPase that evolved from a single gene copy in archaea to triplicate paralog genes in eukaryotes, each having a non-redundant essential function in cell. In Saccharomyces cerevisiae, yGPN1 and yGPN2 are involved in sister chromatid cohesion mechanism, whereas nothing is known regarding yGPN3 function. Previous high-throughput experiments suggested that GPN paralogs interaction may occur. In this work, GPN|GPN contact was analyzed in details using TAP-Tag approach, yeast two-hybrid assay, in silico energy computation and site-directed mutagenesis of a conserved Glu residue located at the center of the interaction interface. It is demonstrated that this residue is essential for cell viability. A chromatid cohesion assay revealed that, like yGPN1 and yGPN2, yGPN3 also plays a role in sister chromatid cohesion. These results suggest that all three GPN proteins act at the molecular level in sister chromatid cohesion mechanism as a GPN|GPN complex reminiscent of the homodimeric structure of PAB0955, an archaeal member of GPN-loop GTPase."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.org/dc/terms/identifier"doi:10.4161/cc.23367"xsd:string
http://purl.uniprot.org/citations/23324351http://purl.org/dc/terms/identifier"doi:10.4161/cc.23367"xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Chen S.W."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Chen S.W."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Armengaud J."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Armengaud J."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Godon C."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Godon C."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Pellequer J.L."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Pellequer J.L."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Alonso B."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Alonso B."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Beraud C."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Beraud C."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Meguellati S."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/author"Meguellati S."xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/name"Cell Cycle"xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/name"Cell Cycle"xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/pages"463-472"xsd:string
http://purl.uniprot.org/citations/23324351http://purl.uniprot.org/core/pages"463-472"xsd:string