RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/2404942http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2404942http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2404942http://www.w3.org/2000/01/rdf-schema#comment"The cloned sfu region of the Serratia marcescens chromosome confers the ability to grow on iron-limited media to an Escherichia coli K-12 strain that is unable to synthesize a siderophore. This DNA fragment was sequenced and found to contain three genes termed sfuA, sfuB, and sfuC, arranged and transcribed in that order. The sfuA gene encoded a periplasmic polypeptide with calculated molecular weights of 36,154 for the precursor and 33,490 for the mature protein. The sfuB gene product was a very hydrophobic protein with a molecular weight of 56,589. The sfuC gene was found to encode a rather polar but membrane-bound protein with a molecular weight of 36,671 which exhibited strong homology to consensus sequences of nucleotide-binding proteins. The number, structural characteristics, and locations of the SfuABC proteins were typical of a periplasmic-binding-protein-dependent transport mechanism. How Fe3+ is solubilized and taken up across the outer membrane remains an enigma."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.org/dc/terms/identifier"doi:10.1128/jb.172.2.572-578.1990"xsd:string
http://purl.uniprot.org/citations/2404942http://purl.org/dc/terms/identifier"doi:10.1128/jb.172.2.572-578.1990"xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Braun V."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Braun V."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Gaisser S."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Gaisser S."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Angerer A."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/author"Angerer A."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/date"1990"xsd:gYear
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/date"1990"xsd:gYear
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/name"J. Bacteriol."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/name"J. Bacteriol."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/pages"572-578"xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/pages"572-578"xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/title"Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/title"Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism."xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/volume"172"xsd:string
http://purl.uniprot.org/citations/2404942http://purl.uniprot.org/core/volume"172"xsd:string
http://purl.uniprot.org/citations/2404942http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/2404942
http://purl.uniprot.org/citations/2404942http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/2404942
http://purl.uniprot.org/citations/2404942http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/2404942
http://purl.uniprot.org/citations/2404942http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/2404942