RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/24257752http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/24257752http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/24257752http://www.w3.org/2000/01/rdf-schema#comment"Bacterial toxin-antitoxin (TA) systems regulate key cellular processes to promote cell survival during periods of stress. During steady-state cell growth, antitoxins typically interact with their cognate toxins to inhibit activity presumably by preventing substrate recognition. We solved two x-ray crystal structures of the Proteus vulgaris tetrameric HigB-(HigA)2-HigB TA complex and found that, unlike most other TA systems, the antitoxin HigA makes minimal interactions with toxin HigB. HigB adopts a RelE family tertiary fold containing a highly conserved concave surface where we predict its active site is located. HigA does not cover the solvent-exposed HigB active site, suggesting that, in general, toxin inhibition is not solely mediated by active site hindrance by its antitoxin. Each HigA monomer contains a helix-turn-helix motif that binds to its own DNA operator to repress transcription during normal cellular growth. This is distinct from antitoxins belonging to other superfamilies that typically only form DNA-binding motifs upon dimerization. We further show that disruption of the HigB-(HigA)2-HigB tetramer to a HigBA heterodimer ablates operator binding. Taken together, our biochemical and structural studies elucidate the novel molecular details of the HigBA TA system."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m113.512095"xsd:string
http://purl.uniprot.org/citations/24257752http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m113.512095"xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Marquez J."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Marquez J."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Dunham C.M."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Dunham C.M."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Maehigashi T."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Maehigashi T."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Miles S.J."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Miles S.J."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Cho S.E."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Cho S.E."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Erdman R."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Erdman R."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Schureck M.A."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/author"Schureck M.A."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/date"2014"xsd:gYear
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/date"2014"xsd:gYear
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/pages"1060-1070"xsd:string
http://purl.uniprot.org/citations/24257752http://purl.uniprot.org/core/pages"1060-1070"xsd:string