RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/26227967http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/26227967http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/26227967http://www.w3.org/2000/01/rdf-schema#comment"MicroRNAs are a class of small regulatory RNAs that are generated from primary miRNA (pri-miRNA) transcripts with a stem-loop structure. Accuracy of the processing of pri-miRNA into mature miRNA in plants can be enhanced by SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1). HYL1 activity is regulated by the FIERY2 (FRY2)/RNA polymerase II C-terminal domain phosphatase-like 1 (CPL1). Here, we discover that HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5) and two serine/arginine-rich splicing factors RS40 and RS41, previously shown to be involved in pre-mRNA splicing, affect the biogenesis of a subset of miRNA. These proteins are required for correct miRNA strand selection and the maintenance of miRNA levels. FRY2 dephosphorylates HOS5 whose phosphorylation status affects its subnuclear localization. HOS5 and the RS proteins bind both intronless and intron-containing pri-miRNAs. Importantly, all of these splicing-related factors directly interact with both HYL1 and SE in nuclear splicing speckles. Our results indicate that these splicing factors are directly involved in the biogenesis of a group of miRNA."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.org/dc/terms/identifier"doi:10.1093/nar/gkv751"xsd:string
http://purl.uniprot.org/citations/26227967http://purl.org/dc/terms/identifier"doi:10.1093/nar/gkv751"xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Cui P."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Cui P."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Chen T."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Chen T."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Xiong L."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/author"Xiong L."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/date"2015"xsd:gYear
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/date"2015"xsd:gYear
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/name"Nucleic Acids Res."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/name"Nucleic Acids Res."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/pages"8283-8298"xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/pages"8283-8298"xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/title"The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/title"The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis."xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/volume"43"xsd:string
http://purl.uniprot.org/citations/26227967http://purl.uniprot.org/core/volume"43"xsd:string
http://purl.uniprot.org/citations/26227967http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/26227967
http://purl.uniprot.org/citations/26227967http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/26227967
http://purl.uniprot.org/citations/26227967http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/26227967
http://purl.uniprot.org/citations/26227967http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/26227967