RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/26438600http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/26438600http://www.w3.org/2000/01/rdf-schema#comment"Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.org/dc/terms/identifier"doi:10.1128/mcb.00665-15"xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/author"Chen X."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/author"Kim H."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/author"Zhang K."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/author"Fang D."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/author"Mendez R."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/date"2015"xsd:gYear
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/name"Mol Cell Biol"xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/pages"4121-4134"xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/title"Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism."xsd:string
http://purl.uniprot.org/citations/26438600http://purl.uniprot.org/core/volume"35"xsd:string
http://purl.uniprot.org/citations/26438600http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/26438600
http://purl.uniprot.org/citations/26438600http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/26438600
http://purl.uniprot.org/uniprot/#_Q91XE9-mappedCitation-26438600http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/26438600
http://purl.uniprot.org/uniprot/Q91XE9http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/26438600