RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/26875866http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/26875866http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/26875866http://www.w3.org/2000/01/rdf-schema#comment"Microtubule-severing enzymes are critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles, and cilia where tubulin detyrosination, acetylation, and glutamylation are abundant. These modifications exhibit stereotyped patterns suggesting spatial and temporal control of microtubule functions. Using human-engineered and differentially modified microtubules we find that glutamylation is the main regulator of the hereditary spastic paraplegia microtubule severing enzyme spastin. Glutamylation acts as a rheostat and tunes microtubule severing as a function of glutamate number added per tubulin. Unexpectedly, glutamylation is a non-linear biphasic tuner and becomes inhibitory beyond a threshold. Furthermore, the inhibitory effect of localized glutamylation propagates across neighboring microtubules, modulating severing in trans. Our work provides the first quantitative evidence for a graded response to a tubulin posttranslational modification and a biochemical link between tubulin glutamylation and complex architectures of microtubule arrays such as those in neurons where spastin deficiency causes disease."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.org/dc/terms/identifier"doi:10.1016/j.cell.2016.01.019"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.org/dc/terms/identifier"doi:10.1016/j.cell.2016.01.019"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/author"Roll-Mecak A."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/author"Roll-Mecak A."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/author"Valenstein M.L."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/author"Valenstein M.L."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/pages"911-921"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/pages"911-921"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/title"Graded control of microtubule severing by tubulin glutamylation."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/title"Graded control of microtubule severing by tubulin glutamylation."xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/volume"164"xsd:string
http://purl.uniprot.org/citations/26875866http://purl.uniprot.org/core/volume"164"xsd:string
http://purl.uniprot.org/citations/26875866http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/26875866
http://purl.uniprot.org/citations/26875866http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/26875866
http://purl.uniprot.org/citations/26875866http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/26875866
http://purl.uniprot.org/citations/26875866http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/26875866
http://purl.uniprot.org/uniprot/Q13509http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/26875866
http://purl.uniprot.org/uniprot/Q9BUF5http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/26875866