RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/27037708http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27037708http://www.w3.org/2000/01/rdf-schema#comment"γ-Hydroxybutyric acid (GHB) is a naturally occurring compound. It is detected in organisms such as yeasts, plants and mammals. GHB is produced from the reduction of succinic semialdehyde (SSA) by the activity of GHB dehydrogenase. Arabidopsis genome contains two GHB dehydrogenase encoding genes. The accumulation of GHB in ssadh mutants led to the speculation that GHB is the cause of aberrant phenotypes. Conversely, the accumulation of GHB in Arabidopsis plants subjected to abiotic stresses was described as a way of avoiding SSA induced damage. To resolve these contrasting views on GHB, we examined the effect of exogenous GHB and SSA on the growth of yeast and Arabidopsis plants. GHB concentrations up to 1.5 mM didn't affect shoots of Arabidopsis plants; however, root growth was inhibited. In contrast, 0.3 mM SSA has severely affected the growth of plants. Treatment of yeast wild-type strain with 10 mM SSA and 10 mM GHB didn't affect the growth. However, the growth of yeast uga2 mutant was greatly inhibited by the same concentration of SSA, but not GHB. Metabolic analysis and enzyme activity assay on native gel showed that Arabidopsis, but not yeast, possesses a GHB dehydrogenase activity that converts GHB back to SSA. The enzymatic assay has also indicated the existence of an additional GHB dehydrogenase encoding gene(s) in Arabidopsis genome. Taken together, we conclude that GHB is less toxic than SSA. Its accumulation in ssadh mutants and during abiotic stresses is a response to avoid the SSA induced damage."xsd:string
http://purl.uniprot.org/citations/27037708http://purl.org/dc/terms/identifier"doi:10.1007/s11103-016-0475-6"xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/author"Ludewig F."xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/author"Mekonnen D.W."xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/name"Plant Mol Biol"xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/pages"429-440"xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/title"Phenotypic and chemotypic studies using Arabidopsis and yeast reveal that GHB converts to SSA and induce toxicity."xsd:string
http://purl.uniprot.org/citations/27037708http://purl.uniprot.org/core/volume"91"xsd:string
http://purl.uniprot.org/citations/27037708http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/27037708
http://purl.uniprot.org/citations/27037708http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/27037708
http://purl.uniprot.org/uniprot/#_P38067-mappedCitation-27037708http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/27037708
http://purl.uniprot.org/uniprot/#_Q9SAK4-mappedCitation-27037708http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/27037708
http://purl.uniprot.org/uniprot/P38067http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/27037708
http://purl.uniprot.org/uniprot/Q9SAK4http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/27037708