RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/27302215http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27302215http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27302215http://www.w3.org/2000/01/rdf-schema#comment"The important role of magnesium (Mg(2+)) in normal cellular physiology requires flexible, yet tightly regulated, intracellular Mg(2+) homeostasis (IMH). However, only little is known about Mg(2+) transporters of subcellular compartments such as mitochondria, despite their obvious importance for the deposition and reposition of intracellular Mg(2+) pools. In particular, knowledge about mechanisms responsible for extrusion of Mg(2+) from mitochondria is lacking. Based on circumstantial evidence, two possible mechanisms of Mg(2+) release from mitochondria were predicted: (1) Mg(2+) efflux coupled to ATP translocation via the ATP-Mg/Pi carrier, and (2) Mg(2+) efflux via a H(+)/Mg(2+) exchanger. Regardless, the identity of the H(+)-coupled Mg(2+) efflux system is unknown. We demonstrate here that member A3 of solute carrier (SLC) family 41 is a mitochondrial Mg(2+) efflux system. Mitochondria of HEK293 cells overexpressing SLC41A3 exhibit a 60% increase in the extrusion of Mg(2+) compared with control cells. This efflux mechanism is Na(+)-dependent and temperature sensitive. Our data identify SLC41A3 as the first mammalian mitochondrial Mg(2+) efflux system, which greatly enhances our understanding of intracellular Mg(2+) homeostasis."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.org/dc/terms/identifier"doi:10.1038/srep27999"xsd:string
http://purl.uniprot.org/citations/27302215http://purl.org/dc/terms/identifier"doi:10.1038/srep27999"xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Sponder G."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Sponder G."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Kolisek M."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Kolisek M."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Smorodchenko A."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Smorodchenko A."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Aschenbach J.R."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Aschenbach J.R."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Mastrototaro L."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/author"Mastrototaro L."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/name"Sci. Rep."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/name"Sci. Rep."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/pages"27999"xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/pages"27999"xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/title"Solute carrier 41A3 encodes for a mitochondrial Mg(2+) efflux system."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/title"Solute carrier 41A3 encodes for a mitochondrial Mg(2+) efflux system."xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/volume"6"xsd:string
http://purl.uniprot.org/citations/27302215http://purl.uniprot.org/core/volume"6"xsd:string