RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/27307258http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27307258http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27307258http://www.w3.org/2000/01/rdf-schema#comment"α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.org/dc/terms/identifier"doi:10.1104/pp.16.00137"xsd:string
http://purl.uniprot.org/citations/27307258http://purl.org/dc/terms/identifier"doi:10.1104/pp.16.00137"xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Muranaka T."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Muranaka T."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Ohyama K."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Ohyama K."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Saito K."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Saito K."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Mizutani M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Mizutani M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Seki H."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Seki H."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Umemoto N."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Umemoto N."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Yotsu-Yamashita M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Yotsu-Yamashita M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Nakayasu M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/author"Nakayasu M."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/name"Plant Physiol."xsd:string
http://purl.uniprot.org/citations/27307258http://purl.uniprot.org/core/name"Plant Physiol"xsd:string