RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/27447607http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27447607http://www.w3.org/2000/01/rdf-schema#comment"Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.org/dc/terms/identifier"doi:10.3390/ijms17071154"xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Cho H.S."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Kim H.S."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Lee A."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Lee S.S."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Jung W.Y."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Park H.J."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Ahn J.C."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/author"Lim B.R."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/date"2016"xsd:gYear
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/name"Int J Mol Sci"xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/pages"E1154"xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/title"The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress."xsd:string
http://purl.uniprot.org/citations/27447607http://purl.uniprot.org/core/volume"17"xsd:string
http://purl.uniprot.org/citations/27447607http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/27447607
http://purl.uniprot.org/citations/27447607http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/27447607
http://purl.uniprot.org/uniprot/#_Q53Q71-mappedCitation-27447607http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/27447607
http://purl.uniprot.org/uniprot/#_Q6Z058-mappedCitation-27447607http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/27447607
http://purl.uniprot.org/uniprot/Q53Q71http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/27447607
http://purl.uniprot.org/uniprot/Q6Z058http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/27447607