RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/27560143http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27560143http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/27560143http://www.w3.org/2000/01/rdf-schema#comment"C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-β-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar β-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.org/dc/terms/identifier"doi:10.1021/acs.biochem.6b00713"xsd:string
http://purl.uniprot.org/citations/27560143http://purl.org/dc/terms/identifier"doi:10.1021/acs.biochem.6b00713"xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Cao H."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Cao H."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Joachimiak A."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Joachimiak A."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Ma M."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Ma M."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Shen B."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Shen B."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Xu W."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Xu W."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Tan K."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Tan K."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Yan X."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Yan X."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Bingman C.A."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Bingman C.A."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Rudolf J.D."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Rudolf J.D."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Chang C.Y."xsd:string
http://purl.uniprot.org/citations/27560143http://purl.uniprot.org/core/author"Chang C.Y."xsd:string