RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/29298433http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/29298433http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/29298433http://www.w3.org/2000/01/rdf-schema#comment"Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.org/dc/terms/identifier"doi:10.1016/j.celrep.2017.12.036"xsd:string
http://purl.uniprot.org/citations/29298433http://purl.org/dc/terms/identifier"doi:10.1016/j.celrep.2017.12.036"xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Kandel E.R."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Kandel E.R."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Karl K.A."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Karl K.A."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Rayman J.B."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/author"Rayman J.B."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/date"2018"xsd:gYear
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/date"2018"xsd:gYear
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/name"Cell Rep."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/name"Cell Rep."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/pages"59-71"xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/pages"59-71"xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/title"TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/title"TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2."xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/volume"22"xsd:string
http://purl.uniprot.org/citations/29298433http://purl.uniprot.org/core/volume"22"xsd:string
http://purl.uniprot.org/citations/29298433http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/29298433
http://purl.uniprot.org/citations/29298433http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/29298433
http://purl.uniprot.org/citations/29298433http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/29298433
http://purl.uniprot.org/citations/29298433http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/29298433