RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/29555844http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/29555844http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/29555844http://www.w3.org/2000/01/rdf-schema#comment"Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.org/dc/terms/identifier"doi:10.1042/BCJ20180053"xsd:string
http://purl.uniprot.org/citations/29555844http://purl.org/dc/terms/identifier"doi:10.1042/bcj20180053"xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Armstrong F.A."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Armstrong F.A."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Evans R.M."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Evans R.M."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Carr S.B."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Carr S.B."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Sargent F."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Sargent F."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Beaton S.E."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Beaton S.E."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Finney A.J."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Finney A.J."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Lamont C.M."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/author"Lamont C.M."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/date"2018"xsd:gYear
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/date"2018"xsd:gYear
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/name"Biochem. J."xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/name"Biochem J"xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/pages"1353-1370"xsd:string
http://purl.uniprot.org/citations/29555844http://purl.uniprot.org/core/pages"1353-1370"xsd:string