RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/2998051http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2998051http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2998051http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2998051http://www.w3.org/2000/01/rdf-schema#comment"The nucleotide sequences of gene segments 10 and 11 from UK bovine rotavirus have been determined. Gene 10 is 751 nucleotides long and contains a single long open reading frame capable of coding for a protein of 175 amino acids. When compared with the published data for gene 10 of the simian rotavirus SA11 and human Wa strains it was found to be more closely related to the SA11 structure (92% nucleotide sequence homology; 97% amino acid sequence homology) than to the human Wa structure (84% nucleotide, 86% amino acid sequence homology). All three strains have two potential N-glycosylation sites in the hydrophobic N terminus of the gene 10 protein. Gene 11 from UK bovine rotavirus is 667 nucleotides long with a single long open reading frame capable of coding for a protein of 198 amino acids. When compared with the published sequence of gene 11 from the human rotavirus Wa, the UK bovine rotavirus gene 11 was found to be one nucleotide longer in the 5'-noncoding region and three nucleotides longer in the coding region. The nucleotide sequence homology was 86%. The predicted proteins coded by segment 11 in UK and Wa rotaviruses are both rich in serine and threonine (23%) and very hydrophilic, but differ appreciably in amino acid sequence (83% homology)."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.org/dc/terms/identifier"doi:10.1016/0042-6822(85)90275-2"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.org/dc/terms/identifier"doi:10.1016/0042-6822(85)90275-2"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.org/dc/terms/identifier"doi:10.1016/0042-6822(85)90275-2"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Dyall-Smith M.L."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Dyall-Smith M.L."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Dyall-Smith M.L."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Ward C.W."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Ward C.W."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Ward C.W."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Azad A.A."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Azad A.A."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/author"Azad A.A."xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/date"1985"xsd:gYear
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/date"1985"xsd:gYear
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/date"1985"xsd:gYear
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/name"Virology"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/name"Virology"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/name"Virology"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/pages"328-336"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/pages"328-336"xsd:string
http://purl.uniprot.org/citations/2998051http://purl.uniprot.org/core/pages"328-336"xsd:string