RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/31036922http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31036922http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31036922http://www.w3.org/2000/01/rdf-schema#comment"Several important Gram-negative bacterial pathogens possess surface capsular layers composed of hypervariable long-chain polysaccharides linked via a conserved 3-deoxy-β-D-manno-oct-2-ulosonic acid (β-Kdo) oligosaccharide to a phosphatidylglycerol residue. The pathway for synthesis of the terminal glycolipid was elucidated by determining the structures of reaction intermediates. In Escherichia coli, KpsS transfers a single Kdo residue to phosphatidylglycerol; this primer is extended using a single enzyme (KpsC), possessing two cytidine 5'-monophosphate (CMP)-Kdo-dependent glycosyltransferase catalytic centers with different linkage specificities. The structure of the N-terminal β-(2→4) Kdo transferase from KpsC reveals two α/β domains, supplemented by several helices. The N-terminal Rossmann-like domain, typically responsible for acceptor binding, is severely reduced in size compared with canonical GT-B folds in glycosyltransferases. The similar structure of the C-terminal β-(2→7) Kdo transferase indicates a past gene duplication event. Both Kdo transferases have a narrow active site tunnel, lined with key residues shared with GT99 β-Kdo transferases. This enzyme provides the prototype for the GT107 family."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.org/dc/terms/identifier"doi:10.1038/s41589-019-0276-8"xsd:string
http://purl.uniprot.org/citations/31036922http://purl.org/dc/terms/identifier"doi:10.1038/s41589-019-0276-8"xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Kimber M.S."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Kimber M.S."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Huang B."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Whitfield C."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Whitfield C."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Lowary T.L."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Lowary T.L."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Mallette E."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Mallette E."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Ovchinnikova O.G."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Ovchinnikova O.G."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Doyle L."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Doyle L."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Huang B.S."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Myler K."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/author"Myler K."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/date"2019"xsd:gYear
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/date"2019"xsd:gYear
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/name"Nat. Chem. Biol."xsd:string
http://purl.uniprot.org/citations/31036922http://purl.uniprot.org/core/name"Nat Chem Biol"xsd:string