RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/31042462http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31042462http://www.w3.org/2000/01/rdf-schema#comment"Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.org/dc/terms/identifier"doi:10.1016/j.celrep.2019.04.017"xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Zhao X."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Wang P."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Wang T."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Sullivan M.A."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Minassian B.A."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Vilaplana F."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Pan X.S."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Nitschke F."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Nitschke S."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Perri A.M."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Chown E.E."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Lee J.P.Y."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/author"Skwara E.P."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/date"2019"xsd:gYear
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/name"Cell Rep"xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/pages"1334-1344.e6"xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/title"Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of Polyglucosan-Associated Neurodegenerative Diseases."xsd:string
http://purl.uniprot.org/citations/31042462http://purl.uniprot.org/core/volume"27"xsd:string
http://purl.uniprot.org/citations/31042462http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/31042462
http://purl.uniprot.org/citations/31042462http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/31042462
http://purl.uniprot.org/uniprot/Q9D6Y9#attribution-276C5BBE72F04D04B238FF33174BD065http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/31042462
http://purl.uniprot.org/uniprot/Q8BR37#attribution-276C5BBE72F04D04B238FF33174BD065http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/31042462