RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/31786106http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31786106http://www.w3.org/2000/01/rdf-schema#comment"Glycosylation of natural and synthetic products can alter the physical, chemical and pharmacological properties of the aglycon. Conversion of 2-heptyl-1-hydroxyquinolin-4-one (HQNO), a potent respiratory inhibitor produced by Pseudomonas aeruginosa, to the less toxic 2-heptyl-1-(β-D-glucopyranosydyl)-quinolin-4-one, was recently demonstrated for Bacillus subtilis strain 168. In this study, we compared the genomes of several Bacillus spp. to identify candidate enzymes for HQNO glucosylation. All three (putative) UDP-glycosyltransferases (GT) of B. subtilis 168 tested, YjiC, YdhE and YojK, were capable of HQNO glucosylation, with YjiC showing the highest turnover rate (kcat) of 4.6 s-1, and YdhE exhibiting the lowest Km value for HQNO of 9.1 μM. All three GT predominantly utilized UDP-glucose, but YdhE was similarly active with TDP-glucose. Among the aglycons tested, HQNO was the preferred substrate of all three GT, but they also showed activities toward the P. aeruginosa exoproducts pyocyanin, 2-heptyl-3-hydroxyquinolin-4(1H)-one (the Pseudomonas quinolone signal) and 2,4-dihydroxyquinoline, the plant derived antimicrobials vanillin and quercetin, and the macrolide antibiotic tylosin A. Our results underline the promiscuity and substrate flexibility of YjiC, YdhE and YojK, and suggest a physiological role in natural toxin resistance of B. subtilis. Especially YdhE appears to be an attractive biocatalyst for the glycoengineering of natural products."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.org/dc/terms/identifier"doi:10.1016/j.jbiotec.2019.11.015"xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/author"Fetzner S."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/author"Sartor P."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/author"Thierbach S."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/author"Yucel O."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/name"J Biotechnol"xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/pages"74-81"xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/title"Efficient modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges."xsd:string
http://purl.uniprot.org/citations/31786106http://purl.uniprot.org/core/volume"308"xsd:string
http://purl.uniprot.org/citations/31786106http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/31786106
http://purl.uniprot.org/citations/31786106http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/31786106
http://purl.uniprot.org/uniprot/#_O05496-mappedCitation-31786106http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31786106
http://purl.uniprot.org/uniprot/#_O31853-mappedCitation-31786106http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31786106
http://purl.uniprot.org/uniprot/#_O34539-mappedCitation-31786106http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31786106
http://purl.uniprot.org/uniprot/O05496http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/31786106
http://purl.uniprot.org/uniprot/O31853http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/31786106
http://purl.uniprot.org/uniprot/O34539http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/31786106