RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/31873303http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31873303http://www.w3.org/2000/01/rdf-schema#comment"Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme's active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes."xsd:string
http://purl.uniprot.org/citations/31873303http://purl.org/dc/terms/identifier"doi:10.1038/s41594-019-0352-5"xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/author"Kollman J.M."xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/author"Lynch E.M."xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/name"Nat Struct Mol Biol"xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/pages"42-48"xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/title"Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments."xsd:string
http://purl.uniprot.org/citations/31873303http://purl.uniprot.org/core/volume"27"xsd:string
http://purl.uniprot.org/citations/31873303http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/31873303
http://purl.uniprot.org/citations/31873303http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/31873303
http://purl.uniprot.org/uniprot/Q9NRF8#attribution-0720AE54C025E6032636A7A722878146http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/31873303
http://purl.uniprot.org/uniprot/#_Q9H6Q0-mappedCitation-31873303http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31873303
http://purl.uniprot.org/uniprot/#_Q9NRF8-mappedCitation-31873303http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31873303
http://purl.uniprot.org/uniprot/Q9NRF8http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/31873303
http://purl.uniprot.org/uniprot/Q9H6Q0http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/31873303