RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/31883792http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31883792http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/31883792http://www.w3.org/2000/01/rdf-schema#comment"KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.org/dc/terms/identifier"doi:10.1016/j.cell.2019.12.003"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.org/dc/terms/identifier"doi:10.1016/j.cell.2019.12.003"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/author"Sun J."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/author"Sun J."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/author"MacKinnon R."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/author"MacKinnon R."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/pages"340-347.e9"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/pages"340-347.e9"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/title"Structural Basis of Human KCNQ1 Modulation and Gating."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/title"Structural Basis of Human KCNQ1 Modulation and Gating."xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/volume"180"xsd:string
http://purl.uniprot.org/citations/31883792http://purl.uniprot.org/core/volume"180"xsd:string
http://purl.uniprot.org/citations/31883792http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/31883792
http://purl.uniprot.org/citations/31883792http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/31883792
http://purl.uniprot.org/citations/31883792http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/31883792
http://purl.uniprot.org/citations/31883792http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/31883792
http://purl.uniprot.org/uniprot/X5DSL3http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/31883792
http://purl.uniprot.org/uniprot/#_X5DSL3-citation-31883792http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/31883792