RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/32270761http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32270761http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32270761http://www.w3.org/2000/01/rdf-schema#comment"Most mammals maintain their body temperature around 37°C, whereas in hibernators it can approach 0°C without triggering a thermogenic response. The remarkable plasticity of the thermoregulatory system allowed mammals to thrive in variable environmental conditions and occupy a wide range of geographical habitats, but the molecular basis of thermoregulation remains poorly understood. Here we leverage the thermoregulatory differences between mice and hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) to investigate the mechanism of cold sensitivity in the preoptic area (POA) of the hypothalamus, a critical thermoregulatory region. We report that, in comparison to squirrels, mice have a larger proportion of cold-sensitive neurons in the POA. We further show that mouse cold-sensitive neurons express the cyclic nucleotide-gated ion channel CNGA3, and that mouse, but not squirrel, CNGA3 is potentiated by cold. Our data reveal CNGA3 as a hypothalamic cold sensor and a molecular marker to interrogate the neuronal circuitry underlying thermoregulation."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.org/dc/terms/identifier"doi:10.7554/elife.55370"xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Gracheva E.O."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Gracheva E.O."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Bagriantsev S.N."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Bagriantsev S.N."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Feketa V.V."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Feketa V.V."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Merriman D.K."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Merriman D.K."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Nikolaev Y.A."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/author"Nikolaev Y.A."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/name"Elife"xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/name"Elife"xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/pages"e55370"xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/title"CNGA3 acts as a cold sensor in hypothalamic neurons."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/title"CNGA3 acts as a cold sensor in hypothalamic neurons."xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/volume"9"xsd:string
http://purl.uniprot.org/citations/32270761http://purl.uniprot.org/core/volume"9"xsd:string
http://purl.uniprot.org/citations/32270761http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32270761
http://purl.uniprot.org/citations/32270761http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32270761