RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/32344433http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32344433http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32344433http://www.w3.org/2000/01/rdf-schema#comment"In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.org/dc/terms/identifier"doi:10.1083/jcb.201811014"xsd:string
http://purl.uniprot.org/citations/32344433http://purl.org/dc/terms/identifier"doi:10.1083/jcb.201811014"xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"McMahon H.T."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"McMahon H.T."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Vallis Y."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Vallis Y."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Lucken-Ardjomande Haesler S."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Lucken-Ardjomande Haesler S."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Pasche M."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/author"Pasche M."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/name"J. Cell Biol."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/name"J. Cell Biol."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/title"GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR DeltaF508."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/title"GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR DeltaF508."xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/volume"219"xsd:string
http://purl.uniprot.org/citations/32344433http://purl.uniprot.org/core/volume"219"xsd:string
http://purl.uniprot.org/citations/32344433http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32344433
http://purl.uniprot.org/citations/32344433http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32344433
http://purl.uniprot.org/citations/32344433http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/32344433
http://purl.uniprot.org/citations/32344433http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/32344433