RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/32572387http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32572387http://www.w3.org/2000/01/rdf-schema#comment"Organoselenium compounds present many pharmacological properties and are promising drugs. However, toxicological effects associated with inhibition of thiol-containing enzymes, such as the δ-aminolevulinic acid dehydratase (δ-AlaD), have been described. The molecular mechanism(s) by which they inhibit thiol-containing enzymes at the atomic level, is still not well known. The use of computational methods to understand the physical-chemical properties and biological activity of chemicals is essential to the rational design of new drugs. In this work, we propose an in silico study to understand the δ-AlaD inhibition mechanism by diphenyl diselenide (DPDS) and its putative metabolite, phenylseleninic acid (PSA), using δ-AlaD enzymes from Homo sapiens (Hsδ-AlaD), Drosophila melanogaster (Dmδ-AlaD) and Cucumis sativus (Csδ-AlaD). Protein modeling homology, molecular docking, and DFT calculations are combined in this study. According to the molecular docking, DPDS and PSA might bind in the Hsδ-AlaD and Dmδ-AlaD active sites interacting with the cysteine residues by SeS interactions. On the other hand, the DPDS does not access the active site of the Csδ-AlaD (a non-thiol protein), while the PSA interacts with the amino acids residues from the active site, such as the Lys291. These interactions might lead to the formation of a covalent bond, and consequently, to the enzyme inhibition. In fact, DFT calculations (mPW1PW91/def2TZVP) demonstrated that the selenylamide bond formation is energetically favored. The in silico data showed here are in accordance with previous experimental studies, and help us to understand the reactivity and biological activity of organoselenium compounds."xsd:string
http://purl.uniprot.org/citations/32572387http://purl.org/dc/terms/identifier"doi:10.1016/j.comtox.2020.100127"xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/author"Orian L."xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/author"Rocha J.B.T."xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/author"Nogara P.A."xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/name"Comput Toxicol"xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/pages"100127"xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/title"The Sepisup>…pi/sup>S/N interactions as a possible mechanism of delta-aminolevulinic acid dehydratase enzyme inhibition by organoselenium compounds: A computational study."xsd:string
http://purl.uniprot.org/citations/32572387http://purl.uniprot.org/core/volume"15"xsd:string
http://purl.uniprot.org/citations/32572387http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32572387
http://purl.uniprot.org/citations/32572387http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/32572387
http://purl.uniprot.org/uniprot/#_Q9VTV9-mappedCitation-32572387http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32572387
http://purl.uniprot.org/uniprot/Q9VTV9http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/32572387