RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/32600361http://www.w3.org/2000/01/rdf-schema#comment"

Background

Colorectal cancer (CRC) is a multifactorial disease resulting from both genetic predisposition and environmental factors including the gut microbiota (GM), but deciphering the influence of genetic variants, environmental variables, and interactions with the GM is exceedingly difficult. We previously observed significant differences in intestinal adenoma multiplicity between C57BL/6 J-ApcMin (B6-Min/J) from The Jackson Laboratory (JAX), and original founder strain C57BL/6JD-ApcMin (B6-Min/D) from the University of Wisconsin.

Methods

To resolve genetic and environmental interactions and determine their contributions we utilized two genetically inbred, independently isolated ApcMin mouse colonies that have been separated for over 20 generations. Whole genome sequencing was used to identify genetic variants unique to the two substrains. To determine the influence of genetic variants and the impact of differences in the GM on phenotypic variability, we used complex microbiota targeted rederivation to generate two Apc mutant mouse colonies harboring complex GMs from two different sources (GMJAX originally from JAX or GMHSD originally from Envigo), creating four ApcMin groups. Untargeted metabolomics were used to characterize shifts in the fecal metabolite profile based on genetic variation and differences in the GM.

Results

WGS revealed several thousand high quality variants unique to the two substrains. No homozygous variants were present in coding regions, with the vast majority of variants residing in noncoding regions. Host genetic divergence between Min/J and Min/D and the complex GM additively determined differential adenoma susceptibility. Untargeted metabolomics revealed that both genetic lineage and the GM collectively determined the fecal metabolite profile, and that each differentially regulates bile acid (BA) metabolism. Metabolomics pathway analysis facilitated identification of a functionally relevant private noncoding variant associated with the bile acid transporter Fatty acid binding protein 6 (Fabp6). Expression studies demonstrated differential expression of Fabp6 between Min/J and Min/D, and the variant correlates with adenoma multiplicity in backcrossed mice.

Conclusions

We found that both genetic variation and differences in microbiota influences the quantitiative adenoma phenotype in ApcMin mice. These findings demonstrate how the use of metabolomics datasets can aid as a functional genomic tool, and furthermore illustrate the power of a multi-omics approach to dissect complex disease susceptibility of noncoding variants."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.org/dc/terms/identifier"doi:10.1186/s12885-020-07007-9"xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Sumner L.W."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Lei Z."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Keane T.M."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Franklin C.L."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Doran A.G."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Hart M.L."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Amos-Landgraf J.M."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Moskowitz J.E."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/author"Busi S.B."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/name"BMC Cancer"xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/pages"600"xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/title"Integration of genomics, metagenomics, and metabolomics to identify interplay between susceptibility alleles and microbiota in adenoma initiation."xsd:string
http://purl.uniprot.org/citations/32600361http://purl.uniprot.org/core/volume"20"xsd:string
http://purl.uniprot.org/citations/32600361http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/32600361
http://purl.uniprot.org/citations/32600361http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/32600361
http://purl.uniprot.org/uniprot/#_B2RUG9-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361
http://purl.uniprot.org/uniprot/#_E9QLQ9-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361
http://purl.uniprot.org/uniprot/#_F6Z405-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361
http://purl.uniprot.org/uniprot/#_P70382-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361
http://purl.uniprot.org/uniprot/#_E9Q4H1-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361
http://purl.uniprot.org/uniprot/#_F6Q4R2-mappedCitation-32600361http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/32600361