RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/33093234http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/33093234http://www.w3.org/2000/01/rdf-schema#comment"K+ and NO3 - are the major forms of potassium and nitrogen that are absorbed by the roots of most terrestrial plants. In this study, we observed that a close relationship between NO3 - and K+ in Arabidopsis (Arabidopsis thaliana) is mediated by NITRATE TRANSPORTER1.1 (NRT1.1). The nrt1.1 knockout mutants showed disturbed K+ uptake and root-to-shoot allocation, and were characterized by growth arrest under K+-limiting conditions. The K+ uptake and root-to-shoot allocation of these mutants were partially recovered by expressing NRT1.1 in the root epidermis-cortex and central vasculature using SULFATE TRANSPORTER1;2 and PHOSPHATE1 promoters, respectively. Two-way analysis of variance based on the K+ contents in nrt1.1-1/K + transporter1, nrt1.1-1/high-affinity K + transporter5-3, nrt1.1-1/K + uptake permease7, and nrt1.1-1/stelar K + outward rectifier-2 double mutants and the corresponding single mutants and wild-type plants revealed physiological interactions between NRT1.1 and K+ channels/transporters located in the root epidermis-cortex and central vasculature. Further study revealed that these K+ uptake-related interactions are dependent on an H+-consuming mechanism associated with the H+/NO3 - symport mediated by NRT1.1. Collectively, these data indicate that patterns of NRT1.1 expression in the root epidermis-cortex and central vasculature are coordinated with K+ channels/transporters to improve K+ uptake and root-to-shoot allocation, respectively, which in turn ensures better growth under K+-limiting conditions."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.org/dc/terms/identifier"doi:10.1104/pp.20.01229"xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/author"Liu X.X."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/author"Zhu Y.X."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/author"Jin C.W."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/author"Ye J.Y."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/author"Fang X.Z."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/name"Plant Physiol"xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/pages"1900-1916"xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/title"The K+ and NO3 - Interaction Mediated by NITRATE TRANSPORTER1.1 Ensures Better Plant Growth under K+-Limiting Conditions."xsd:string
http://purl.uniprot.org/citations/33093234http://purl.uniprot.org/core/volume"184"xsd:string
http://purl.uniprot.org/citations/33093234http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/33093234
http://purl.uniprot.org/citations/33093234http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/33093234
http://purl.uniprot.org/uniprot/#_Q05085-mappedCitation-33093234http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/33093234
http://purl.uniprot.org/uniprot/Q05085http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/33093234