RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/33370778http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/33370778http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/33370778http://www.w3.org/2000/01/rdf-schema#comment"Coordination of cell growth is essential for the development of the brain, but the molecular mechanisms underlying the regulation of glial and neuronal size are poorly understood. To investigate the mechanisms involved in glial size regulation, we used Caenorhabditis elegans amphid sheath (AMsh) glia as a model and show that a conserved cis-Golgi membrane protein eas-1/GOLT1B negatively regulates glial growth. We found that eas-1 inhibits a conserved E3 ubiquitin ligase rnf-145/RNF145, which, in turn, promotes nuclear activation of sbp-1/ SREBP, a key regulator of sterol and fatty acid synthesis, to restrict cell growth. At early developmental stages, rnf-145 in the cis-Golgi network inhibits sbp-1 activation to promote the growth of glia, and when animals reach the adult stage, this inhibition is released through an eas-1-dependent shuttling of rnf-145 from the cis-Golgi to the trans-Golgi network to stop glial growth. Furthermore, we identified long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA), as downstream products of the eas-1-rnf-145-sbp-1 pathway that functions to prevent the overgrowth of glia. Together, our findings reveal a novel and potentially conserved mechanism underlying glial size control."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.org/dc/terms/identifier"doi:10.1371/journal.pbio.3001051"xsd:string
http://purl.uniprot.org/citations/33370778http://purl.org/dc/terms/identifier"doi:10.1371/journal.pbio.3001051"xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Guo J."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Guo J."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Guan Z."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Guan Z."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Wang Z."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Wang Z."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Zhang A."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Zhang A."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Yan D."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Yan D."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Dong P."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Dong P."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Ockerman K."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/author"Ockerman K."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/date"2020"xsd:gYear
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/name"PLoS Biol."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/name"PLoS Biol."xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/pages"e3001051"xsd:string
http://purl.uniprot.org/citations/33370778http://purl.uniprot.org/core/pages"e3001051"xsd:string