RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/3342239http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/3342239http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/3342239http://www.w3.org/2000/01/rdf-schema#comment"A human liver cDNA expression library in lambda-phage gt11 was screened with monoclonal antibodies to rat liver protein-disulfide isomerase/oxidoreductase (EC 5.3.4.1/1.8.4.2), also known as glutathione-insulin transhydrogenase (GIT). The nucleotide sequence of the largest cDNA insert (hgit-1) was determined. It contained approx. 1500 basepairs, representing an estimated 65% of the glutathione-insulin transhydrogenase message. The amino-acid sequence deduced from this cDNA insert contains a 7-amino-acid long polypeptide determined by sequencing the active-site fragment isolated from the rat GIT protein. A comparison of the nucleotide sequence of hgit-1 and a previously reported nucleotide sequence of rat glutathione-insulin transhydrogenase cDNA shows that the human hgit-1 clone corresponds to the middle of the transhydrogenase message at amino-acid residue number 275 of the rat protein, and codes for 206 amino-acid residues, including one of the two active-site regions of glutathione-insulin transhydrogenase, a stop codon (TAA), a long 3'-noncoding region of over 800 bases, a polyadenylation signal (AATAA), and a 29 base poly(A) tail. There exists high homology between the human and rat enzymes (94% in the overall amino-acid sequence, with 100% in the active site region and 81% in the nucleotide sequence within the coding portion of hgit-1). As with the rat enzyme, the human enzyme shows some identity with another dithiol-disulfide-exchange protein, Escherichia coli thioredoxin. Like rat cDNA, the human hgit-1 cDNA hybridized to rat mRNA of 2500 bases on a Northern blot. The relative quantitative abundance of GIT mRNA in nine rat tissues studied using hgit-1 as a hybridization probe was found to be in the same order as previously found with the rat cDNA. Thus, the above studies indicate that glutathione-insulin transhydrogenase is a highly conserved protein and that the human hgit-1 cDNA is suitable for use as a probe for further studies on gene regulation of this enzyme."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.org/dc/terms/identifier"doi:10.1016/0167-4781(88)90080-2"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.org/dc/terms/identifier"doi:10.1016/0167-4781(88)90080-2"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/author"Morris J.I."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/author"Morris J.I."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/author"Varandani P.T."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/author"Varandani P.T."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/date"1988"xsd:gYear
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/date"1988"xsd:gYear
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/pages"169-180"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/pages"169-180"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/title"Characterization of a cDNA for human glutathione-insulin transhydrogenase (protein-disulfide isomerase/oxidoreductase)."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/title"Characterization of a cDNA for human glutathione-insulin transhydrogenase (protein-disulfide isomerase/oxidoreductase)."xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/volume"949"xsd:string
http://purl.uniprot.org/citations/3342239http://purl.uniprot.org/core/volume"949"xsd:string
http://purl.uniprot.org/citations/3342239http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/3342239
http://purl.uniprot.org/citations/3342239http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/3342239
http://purl.uniprot.org/citations/3342239http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/3342239
http://purl.uniprot.org/citations/3342239http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/3342239
http://purl.uniprot.org/uniprot/P07237http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/3342239
http://purl.uniprot.org/embl-cds/CAA30112.1http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/3342239