RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/35222476http://www.w3.org/2000/01/rdf-schema#comment"RNA polymerase II-associated factor 1 complex (PAF1C) regulates the transition from the vegetative to the reproductive phase primarily by modulating the expression of FLOWERING LOCUS C (FLC) and FLOWERING LOCUS M [FLM, also known as MADS AFFECTING FLOWERING1 (MAF1)] at standard growth temperatures. However, the role of PAF1C in the regulation of flowering time at chilling temperatures (i.e., cold temperatures that are above freezing) and whether PAF1C affects other FLC-clade genes (MAF2-MAF5) remains unknown. Here, we showed that Arabidopsis thaliana mutants of any of the six known genes that encode components of PAF1C [CELL DIVISION CYCLE73/PLANT HOMOLOGOUS TO PARAFIBROMIN, VERNALIZATION INDEPENDENCE2 (VIP2)/EARLY FLOWERING7 (ELF7), VIP3, VIP4, VIP5, and VIP6/ELF8] showed temperature-insensitive early flowering across a broad temperature range (10°C-27°C). Flowering of PAF1C-deficient mutants at 10°C was even earlier than that in flc, flm, and flc flm mutants, suggesting that PAF1C regulates additional factors. Indeed, RNA sequencing (RNA-Seq) of PAF1C-deficient mutants revealed downregulation of MAF2-MAF5 in addition to FLC and FLM at both 10 and 23°C. Consistent with the reduced expression of FLC and the FLC-clade members FLM/MAF1 and MAF2-MAF5, chromatin immunoprecipitation (ChIP)-quantitative PCR assays showed reduced levels of the permissive epigenetic modification H3K4me3/H3K36me3 and increased levels of the repressive modification H3K27me3 at their chromatin. Knocking down MAF2-MAF5 using artificial microRNAs (amiRNAs) in the flc flm background (35S::amiR-MAF2-5 flc flm) resulted in significantly earlier flowering than flc flm mutants and even earlier than short vegetative phase (svp) mutants at 10°C. Wild-type seedlings showed higher accumulation of FLC and FLC-clade gene transcripts at 10°C compared to 23°C. Our yeast two-hybrid assays and in vivo co-immunoprecipitation (Co-IP) analyses revealed that MAF2-MAF5 directly interact with the prominent floral repressor SVP. Late flowering caused by SVP overexpression was almost completely suppressed by the elf7 and vip4 mutations, suggesting that SVP-mediated floral repression required a functional PAF1C. Taken together, our results showed that PAF1C regulates the transcription of FLC and FLC-clade genes to modulate temperature-responsive flowering at a broad range of temperatures and that the interaction between SVP and these FLC-clade proteins is important for floral repression."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.org/dc/terms/identifier"doi:10.3389/fpls.2022.817356"xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/author"Jin S."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/author"Ahn J.H."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/author"Nasim Z."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/author"Susila H."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/author"Youn G."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/date"2022"xsd:gYear
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/name"Front Plant Sci"xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/pages"817356"xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/title"Polymerase II-Associated Factor 1 Complex-Regulated FLOWERING LOCUS C-Clade Genes Repress Flowering in Response to Chilling."xsd:string
http://purl.uniprot.org/citations/35222476http://purl.uniprot.org/core/volume"13"xsd:string
http://purl.uniprot.org/citations/35222476http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/35222476
http://purl.uniprot.org/citations/35222476http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/35222476
http://purl.uniprot.org/uniprot/#_F4K204-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A7XFU1-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARA1-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARA2-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARA3-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARA9-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARB5-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARC3-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8ARE3-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476
http://purl.uniprot.org/uniprot/#_A0A1P8BBF5-mappedCitation-35222476http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/35222476