RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/36450357http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/36450357http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/36450357http://www.w3.org/2000/01/rdf-schema#comment"Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.org/dc/terms/identifier"doi:10.1038/s41586-022-05587-z"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.org/dc/terms/identifier"doi:10.1038/s41586-022-05587-z"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/author"Rudner D.Z."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/author"Rudner D.Z."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/author"Roney I.J."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/author"Roney I.J."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/date"2023"xsd:gYear
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/date"2023"xsd:gYear
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/name"Nature"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/name"Nature"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/pages"729-734"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/pages"729-734"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/title"Two broadly conserved families of polyprenyl-phosphate transporters."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/title"Two broadly conserved families of polyprenyl-phosphate transporters."xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/volume"613"xsd:string
http://purl.uniprot.org/citations/36450357http://purl.uniprot.org/core/volume"613"xsd:string
http://purl.uniprot.org/citations/36450357http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/36450357
http://purl.uniprot.org/citations/36450357http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/36450357
http://purl.uniprot.org/citations/36450357http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/36450357
http://purl.uniprot.org/citations/36450357http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/36450357
http://purl.uniprot.org/uniprot/Q2FZY8http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/36450357
http://purl.uniprot.org/uniprot/O31823http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/36450357