RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/36853654http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/36853654http://www.w3.org/2000/01/rdf-schema#comment"The catalytic functions of metalloenzymes are often strongly correlated with metal elements in the active sites. However, dioxygen-activating nonheme quercetin dioxygenases (QueD) are found with various first-row transition-metal ions when metal swapping inactivates their innate catalytic activity. To unveil the molecular basis of this seemingly promiscuous yet metal-specific enzyme, we transformed manganese-dependent QueD into a nickel-dependent enzyme by sequence- and structure-based directed evolution. Although the net effect of acquired mutations was primarily to rearrange hydrophobic residues in the active site pocket, biochemical, kinetic, X-ray crystallographic, spectroscopic, and computational studies suggest that these modifications in the secondary coordination spheres can adjust the electronic structure of the enzyme-substrate complex to counteract the effects induced by the metal substitution. These results explicitly demonstrate that such noncovalent interactions encrypt metal specificity in a finely modulated manner, revealing the underestimated chemical power of the hydrophobic sequence network in enzyme catalysis."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.org/dc/terms/identifier"doi:10.1021/jacs.2c13337"xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/author"Cao Y."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/author"Kim H."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/author"Song W.J."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/author"Eom H."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/author"de Visser S.P."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/date"2023"xsd:gYear
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/name"J Am Chem Soc"xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/pages"5880-5887"xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/title"Underlying Role of Hydrophobic Environments in Tuning Metal Elements for Efficient Enzyme Catalysis."xsd:string
http://purl.uniprot.org/citations/36853654http://purl.uniprot.org/core/volume"145"xsd:string
http://purl.uniprot.org/citations/36853654http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/36853654
http://purl.uniprot.org/citations/36853654http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/36853654
http://purl.uniprot.org/uniprot/#_P42106-mappedCitation-36853654http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/36853654
http://purl.uniprot.org/uniprot/P42106http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/36853654