RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/7629020http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/7629020http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/7629020http://www.w3.org/2000/01/rdf-schema#comment"Nearly full-length cDNA clones for muscle-type and non-muscle-type aldolase mRNAs were cloned from lambda gt10 cDNA libraries constructed from skeletal muscle and liver mRNAs of lamprey (Entosphenus japonicus). The cDNA-M8 has 2,240 bp carrying an open reading frame of 1,089 bp which encodes 362 amino acids without the amino terminal methionine, while the cDNA-L3 is 1,761 bp in length and has an open reading frame of 1,092 bp, which encodes 363 amino acids without the methionine. We designated the cDNA clones M8 and L3 as the muscle-type and non-muscle-type aldolase cDNAs, respectively. The entire amino acid sequences deduced from cDNA-M8 and -L3 show a high degree of identity to one another (76%) and also to vertebrate aldolases A (74-76%), B (68-70%), and C (71-76%) and Drosophila melanogaster aldolases alpha, beta, and gamma (66-67%). Northern blot analyses using the 3'-noncoding sequences of cDNA-M8 and -L3 as hybridization probes indicated that the muscle-type mRNA is expressed mainly in the skeletal muscle, heart muscle, brain, and some other tissues, but probably not in liver, while the non-muscle-type mRNA is expressed mainly in the liver and also in brain and other tissues, except for the heart muscle. Phylogenetic analyses showed that both muscle-type and non-muscle-type aldolases of lamprey resemble one another and might share a common ancestor with vertebrate aldolases A and C, but they are not direct ancestors of vertebrate aldolases."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.org/dc/terms/identifier"doi:10.1093/oxfordjournals.jbchem.a124742"xsd:string
http://purl.uniprot.org/citations/7629020http://purl.org/dc/terms/identifier"doi:10.1093/oxfordjournals.jbchem.a124742"xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Hori K."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Hori K."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Imai T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Imai T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Miyata T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Miyata T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Yoshida M."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Yoshida M."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Zhang R."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Zhang R."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Iwabe N."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Iwabe N."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Yatsuki H."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Yatsuki H."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Kusakabe T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/author"Kusakabe T."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/date"1995"xsd:gYear
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/date"1995"xsd:gYear
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/name"J. Biochem."xsd:string
http://purl.uniprot.org/citations/7629020http://purl.uniprot.org/core/name"J. Biochem."xsd:string