RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/8073283http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8073283http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8073283http://www.w3.org/2000/01/rdf-schema#comment"Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein alpha subunit-p21ras superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTP gamma S and GDP.AlF4-complexes formed by the G protein Gi alpha 1 demonstrate specific roles in transition-state stabilization for two highly conserved residues. Glutamine204 (Gln61 in p21ras) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G alpha family, this residue may account for the higher hydrolytic rate of G alpha proteins relative to those of the p21ras family members. The fold of Gi alpha 1 differs from that of the homologous Gt alpha subunit in the conformation of a helix-loop sequence located in the alpha-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP gamma S-Gi alpha 1, suggesting a mechanism that may promote release of the beta gamma subunit complex when the alpha subunit is activated by GTP."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.org/dc/terms/identifier"doi:10.1126/science.8073283"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.org/dc/terms/identifier"doi:10.1126/science.8073283"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Berghuis A.M."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Berghuis A.M."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Lee E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Lee E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Gilman A.G."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Gilman A.G."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Sprang S.R."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Sprang S.R."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Linder M.E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Linder M.E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Coleman D.E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/author"Coleman D.E."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/name"Science"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/name"Science"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/pages"1405-1412"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/pages"1405-1412"xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/title"Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis."xsd:string
http://purl.uniprot.org/citations/8073283http://purl.uniprot.org/core/title"Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis."xsd:string