RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/8111037http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8111037http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8111037http://www.w3.org/2000/01/rdf-schema#comment"Infection of potato leaves (Solanum tuberosum L. cv. Datura) by the late blight fungus Phytophthora infestans, or treatment with fungal elicitor leads to a strong increase in chitinase and 1,3-beta-glucanase activities. Both enzymes have been implicated in the plant's defence against potential pathogens. In an effort to characterize the corresponding genes, we isolated complementary DNAs encoding the basic forms (class I) of both chitinase and 1,3-beta-glucanase, which are the most abundant isoforms in infected leaves. Sequence analysis revealed that at least four genes each are expressed in elicitor-treated leaves. The structural features of the potato chitinases include a hydrophobic signal peptide at the N-terminus, a hevein domain which is characteristic of class I chitinases, a proline- and glycine-rich linker region which varies among all potato chitinases, a catalytic domain, and a C-terminal extension. The potato 1,3-beta-glucanases also contain a N-terminal hydrophobic signal peptide and a C-terminal extension, the latter comprising a potential glycosylation site. RNA blot hybridization experiments showed that basic chitinase and 1,3-beta-glucanase are strongly and coordinately induced in leaves in response to infection, elicitor treatment, ethylene treatment, or wounding. In addition to their activation by stress, both types of genes are regulated by endogenous factors in a developmental and organ-specific manner. Appreciable amounts of chitinase and 1,3-beta-glucanase mRNAs were found in old leaves, stems, and roots, as well as in sepals of healthy, untreated plants, whereas tubers, root tips, and all other flower organs (petals, stamen, carpels) contained very low levels of both mRNAs. In young leaves and stems, chitinase and 1,3-beta-glucanase were differentially expressed. While chitinase mRNA was abundant in these parts of the plant, 1,3-beta-glucanase mRNA was absent. DNA blot analysis indicated that in potato, chitinase and 1,3-beta-glucanase are encoded by gene families of considerable complexity."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.org/dc/terms/identifier"doi:10.1007/bf00020173"xsd:string
http://purl.uniprot.org/citations/8111037http://purl.org/dc/terms/identifier"doi:10.1007/bf00020173"xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/author"Kombrink E."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/author"Kombrink E."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/author"Beerhues L."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/author"Beerhues L."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/name"Plant Mol. Biol."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/name"Plant Mol. Biol."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/pages"353-367"xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/pages"353-367"xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/title"Primary structure and expression of mRNAs encoding basic chitinase and 1,3-beta-glucanase in potato."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/title"Primary structure and expression of mRNAs encoding basic chitinase and 1,3-beta-glucanase in potato."xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/volume"24"xsd:string
http://purl.uniprot.org/citations/8111037http://purl.uniprot.org/core/volume"24"xsd:string
http://purl.uniprot.org/citations/8111037http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/8111037
http://purl.uniprot.org/citations/8111037http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/8111037
http://purl.uniprot.org/citations/8111037http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/8111037
http://purl.uniprot.org/citations/8111037http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/8111037
http://purl.uniprot.org/uniprot/P52400http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/8111037
http://purl.uniprot.org/uniprot/P52403http://purl.uniprot.org/core/citationhttp://purl.uniprot.org/citations/8111037