RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/8155643http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8155643http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8155643http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Citation
http://purl.uniprot.org/citations/8155643http://www.w3.org/2000/01/rdf-schema#comment"We have used molecular modeling and site-directed mutagenesis to identify the catalytic residues of human long chain acyl-CoA dehydrogenase. Among the acyl-CoA dehydrogenases, a family of flavoenzymes involved in beta-oxidation of fatty acids, only the three-dimensional structure of the medium chain fatty acid specific enzyme from pig liver has been determined (Kim, J.-J.P., Wang, M., & Paschke, R. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7523-7527). Despite the overall sequence homology, the catalytic residue (E376) of medium chain acyl-CoA dehydrogenase is not conserved in isovaleryl- and long chain acyl-CoA dehydrogenases. A molecular model of human long chain acyl-CoA dehydrogenase was derived using atomic coordinates determined by X-ray diffraction studies of the pig medium chain specific enzyme, interactive graphics, and molecular mechanics calculations. The model suggests that E261 functions as the catalytic base in the long-chain dehydrogenase. An altered dehydrogenase in which E261 was replaced by a glutamine was constructed, expressed, purified, and characterized. The mutant enzyme exhibited less than 0.02% of the wild-type activity. These data strongly suggest that E261 is the base that abstracts the alpha-proton of the acyl-CoA substrate in the catalytic pathway of this dehydrogenase."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.org/dc/terms/identifier"doi:10.1021/bi00180a021"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.org/dc/terms/identifier"doi:10.1021/bi00180a021"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.org/dc/terms/identifier"doi:10.1021/bi00180a021"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Djordjevic S."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Djordjevic S."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Dong Y."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Dong Y."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Kim J.J."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Kim J.J."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Strauss A.W."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Strauss A.W."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Frerman F.E."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Frerman F.E."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Paschke R."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/author"Paschke R."xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/date"1994"xsd:gYear
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/name"Biochemistry"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/name"Biochemistry"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/pages"4258-4264"xsd:string
http://purl.uniprot.org/citations/8155643http://purl.uniprot.org/core/pages"4258-4264"xsd:string