RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/8389453http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8389453http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8389453http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/8389453http://www.w3.org/2000/01/rdf-schema#comment"An open reading frame, BamHI D6R, from the central highly conserved region of the Shope fibroma virus (SFV) genome was sequenced and found to have significant homology to that of uracil DNA glycosylases from a number of organisms. Uracil DNA glycosylase catalyzes the initial step in the repair pathway that removes potentially mutagenic uracil from duplex DNA. The D6R polypeptide was expressed in reticulocyte lysates programmed with RNA transcribed from an expression vector containing the T7 RNA polymerase promoter. A highly specific ethidium bromide fluorescence assay of the in vitro translation product determined that the encoded protein does indeed possess uracil DNA glycosylase activity. Open reading frames from other poxviruses, including vaccinia virus (HindIII D4R) and fowlpox (D4), are highly homologous to D6R of SFV and are predicted to encode uracil DNA glycosylases. Identification of the SFV uracil DNA glycosylase provides evidence that this poxviral protein is involved in the repair of the viral DNA genome. Since this enzyme performs only the initial step required for the removal of uracil from DNA, creating an apyrimidinic site, we suggest that other, possibly virus-encoded, repair activities must be present in the cytoplasm of infected cells to complete the uracil excision repair pathway."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.org/dc/terms/identifier"doi:10.1073/pnas.90.10.4518"xsd:string
http://purl.uniprot.org/citations/8389453http://purl.org/dc/terms/identifier"doi:10.1073/pnas.90.10.4518"xsd:string
http://purl.uniprot.org/citations/8389453http://purl.org/dc/terms/identifier"doi:10.1073/pnas.90.10.4518"xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"McFadden G."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"McFadden G."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"McFadden G."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Upton C."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Upton C."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Upton C."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Stuart D.T."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Stuart D.T."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/author"Stuart D.T."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/date"1993"xsd:gYear
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/date"1993"xsd:gYear
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/date"1993"xsd:gYear
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/pages"4518-4522"xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/pages"4518-4522"xsd:string
http://purl.uniprot.org/citations/8389453http://purl.uniprot.org/core/pages"4518-4522"xsd:string