RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/9235954http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/9235954http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/9235954http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Citation
http://purl.uniprot.org/citations/9235954http://www.w3.org/2000/01/rdf-schema#comment"Mitogen-activated protein (MAP) kinases are involved in many cellular processes. Here we describe the cloning and characterization of a new MAP kinase, p38-2. p38-2 belongs to the p38 subfamily of MAP kinases and shares with it the TGY phosphorylation motif. The complete p38-2 cDNA was isolated by polymerase chain reaction. It encodes a 364-amino acid protein with 73% identity to p38. Two shorter isoforms missing the phosphorylation motif were identified. Analysis of various tissues demonstrated that p38-2 is differently expressed from p38. Highest expression levels were found in heart and skeletal muscle. Like p38, p38-2 is activated by stress-inducing signals and proinflammatory cytokines. The preferred upstream kinase is MEK6. Although p38-2 and p38 phosphorylate the same substrates, the site specificity of phosphorylation can differ as shown by two-dimensional phosphopeptide analysis of Sap-1a. Additionally, kinetic studies showed that p38-2 appears to be about 180 times more active than p38 on certain substrates such as ATF2. Both kinases are inhibited by a class of pyridinyl imidazoles. p38-2 phosphorylation of ATF2 and Sap-1a but not Elk1 results in increased transcriptional activity of these factors. A sequential kinetic mechanism of p38-2 is suggested by steady state kinetic analysis. In conclusion, p38-2 may be an important component of the stress response required for the homeostasis of a cell."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.org/dc/terms/identifier"doi:10.1074/jbc.272.31.19509"xsd:string
http://purl.uniprot.org/citations/9235954http://purl.org/dc/terms/identifier"doi:10.1074/jbc.272.31.19509"xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Young D.B."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Young D.B."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Hunter T."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Hunter T."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Stein B."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Stein B."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Barbosa M.S."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Barbosa M.S."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Janknecht R."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Janknecht R."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Murray B.W."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Murray B.W."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Yang M.X."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/author"Yang M.X."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/date"1997"xsd:gYear
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/date"1997"xsd:gYear
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/9235954http://purl.uniprot.org/core/pages"19509-19517"xsd:string