Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1-binding site.

Varghese S., Rydziel S., Canalis E.

Basic fibroblast growth factor (bFGF) stimulates collagenase-3 synthesis in fetal rat osteoblast-enriched (Ob) cells. In this study we examined the mechanism of collagenase-3 regulation in Ob cells. bFGF at 0.6 nM or more increased the transcriptional rate of collagenase-3 by 3-to 7-fold. bFGF at 0.6 nM increased the activity of collagenase-3 promoter-luciferase reporter deletion constructs from -721 to -53 nucleotides transiently transfected into Ob cells by 3-to 5-fold. The minimal bFGF response was retained within the -53 to +28 sequence. Mutational analysis revealed that the bFGF effect was mediated through an activator protein-1 (AP-1)-binding site located at -48 to -42 nucleotides in the promoter. bFGF stimulated the binding of nuclear factors to the collagenase AP-1 site by 3-to 4-fold, as determined by electrophoretic mobility shift assays. Supershift analysis of nuclear extracts revealed that bFGF stimulates the occupancy of AP-1 site by c-Jun, JunB, JunD, c-Fos, FosB, and Fra2. In conclusion, bFGF increases collagenase-3 gene transcription, an effect mediated through an AP-1 site, due to the induction or activation of Jun and Fos family transcription factors. The stimulation of collagenase-3 synthesis by bFGF may be critical in mediating the actions of this growth factor in bone remodeling.

Endocrinology 141:2185-2191(2000) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again