Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The HiNF-P/p220NPAT cell cycle signaling pathway controls nonhistone target genes.

Medina R., van der Deen M., Miele-Chamberland A., Xie R.-L., van Wijnen A.J., Stein J.L., Stein G.S.

HiNF-P and its cofactor p220(NPAT) are principal factors regulating histone gene expression at the G(1)-S phase cell cycle transition. Here, we have investigated whether HiNF-P controls other cell cycle- and cancer-related genes. We used cDNA microarrays to monitor responsiveness of gene expression to small interfering RNA-mediated depletion of HiNF-P. Candidate HiNF-P target genes were examined for the presence of HiNF-P recognition motifs, in vitro HiNF-P binding to DNA, and in vivo association by chromatin immunoprecipitations and functional reporter gene assays. Of 177 proliferation-related genes we tested, 20 are modulated in HiNF-P-depleted cells and contain putative HiNF-P binding motifs. We validated that at least three genes (i.e., ATM, PRKDC, and CKS2) are HiNF-P dependent and provide data indicating that the DNA damage response is altered in HiNF-P-depleted cells. We conclude that, in addition to histone genes, HiNF-P also regulates expression of nonhistone targets that influence competency for cell cycle progression.

Cancer Res. 67:10334-10342(2007) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again